Updating with the masterserver
Specification draft

Revision 1.2

OpenClonk will have an automatic update system like Clonk Rage. However, the update logic will
not be in the engine anymore.

The masterserver acts as the facilitator between the update packages on the server and the engine.
Basically, the process looks like this: The engine asks for an update by sending his version
information to the masterserver. The masterserver responds with the new version information and
path to the right update package for the engine. The engine will then download that update package
and apply it.

Masterserver interface to the Engine

The engine will provide two additional parameters when requesting the list of running games:

version May only contain numbers, letters, "."," " and "-"
nmnmnn

platform May also only contain numbers, letters, "."," " and "-". The string will
normally be in this format: win-x86, win-x86 64, 1inux-x86, ...

An example query string would look like this

http://boom.openclonk.org/server/?version=5.0.1.0&platform=win

Additionally to the list of running games, more information will be shown by the masterserver. This
includes the most recent engine version, the message of the day and the URL to the update package
the requesting client will have to download in order to update. If the client has the newest version,
the field is not shown.

[Info]

Version=[Most recent engine version]

MOTD=[A message of the day]

UpdateURL=[URL to the update package if there is one]

If the client does not specify the version information or platform information, no UpdateURL is
shown.

If the parameter action is specified with the value version, only the above [Info]-section will be
displayed, not the list of running games. Example:

http://boom.openclonk.org/server/?action=versionsversion=5.0.1.0&platform=win

Constructing the UpdateURL

The masterserver will have a database table with the following coloums: old version, new version,
platform, file. (The actual row names and the table name can be chosen freely.)

old version and platform together form the primary key of the table. platform holds the information
about OS and architecture, e.g. win-x86. old version is the version to update from, the version of
the engine that is requesting an update. new version is the version to which it can be updated and

file denotes the relative file path to the update package from the build directory on the server (the
build directory will be on www.openclonk.org/builds/ but this should be configurable).
Thus, the construction of the update url is a simple lookup in the table.

If the version information the engine stated in the request cannot be found under old version in the
table but the platform parameter is valid, the update url will then always point to the newest full
installation file which should be found under old version = [none] and platform = [the one
specified] in the table.

Interface to the build scripts

The build script compiles the source, pack the game data, pack the update packages and installation
files and finally upload those packages on the server. For each uploaded package, the build script
will authenticate itself and command the masterserver to write the information for that package into

the table.

Following parameters will be given for each uploaded update package:

action

old_version

new_version
platform
file

hash

delete old_files

Will be release-file for that action.

A comma seperated list of versions to update from. If not specified, this file is
the full installation. Format as described earlier.

Version to update to. Format as described earlier.
The platform as described earlier. Format as described earlier.

The path to the uploaded file. The path is given relative to the builds directory
on the server (which will be /www/builds/ in the file system, but this too
should be configurable). Check that this is a valid filename.

The hash of the uploaded file signed with a common HMAC. The string only
contains numbers plus letters from a-f (hexadecimal).

If the unencrypted hash is not equal to the hash of the specified file or the file
does not exist, the authentication failed and the command is rejected.

If "yes", referenced files from deleted rows are also deleted.

The task of the masterserver is to

1. Verify the authentication of the build server and validate the parameters.

2. If old version has not been specified, only the row containing old version = [none] and the
given platform is deleted from the table (the old installation file). Otherwise, all rows which
have the same platform as the one specified in the command and update to an older version
than the one given in the new_version parameter are deleted from the table (the old update
package) except the old version = [none] row.

All files that have been referenced by deleted rows must be deleted by the masterserver in
both cases if delete old files is "yes".

3. Write the new row(s) with the data into the table: For every value in old_version, make a
new row with otherwise the same values (new version, platform, file).
Also, note down the new version somewhere as the most recent engine version so it can be
displayed in the server's [Info]- section.

Example:

An excerpt of this table could look like this:

old_version |new_version |platform file

1.3.0 win-x86 oc-win32-1.3.0.msi
1.0.1 1.3.0 win-x86 oc-win32-1.0.1-1.3.0.c4u
1.0.2 1.3.0 win-x86 oc-win32-1.0.1-1.3.0.c4u
1.2.4 1.3.0 win-x86 oc-win32-1.0.1-1.3.0.c4u
1.2.6 1.3.0 win-x86 oc-win32-1.0.1-1.3.0.c4u

This call is made:

?action=release-file&old version=1.2.4,1.2.6&platform=win-

x86&new version=1.4.0&file=oc-win32-1.2.4-1.4.0.c4u&hash=3981842046

The table will look like this after that:

old version |new_version | platform file

1.3.0 win-x86 oc-win32-1.3.0.msi
1.2.4 1.4.0 win-x86 oc-win32-1.2.4-1.4.0.c4u
1.2.6 1.4.0 win-x86 oc-win32-1.2.4-1.4.0.c4u

Another call is made:

?action=release-file&platform=win-x86&new version=1.4.0&file=oc-win32-
1.4.0.msighash=1238754345

And the table looks like this:

old_version |new_version |platform file
1.4.0 win-x86 oc-win32-1.4.0.msi
1.2.4 1.4.0 win-x86 oc-win32-1.2.4-1.4.0.c4u
1.2.6 1.4.0 win-x86 oc-win32-1.2.4-1.4.0.c4u
Download page

The download page will be a static page which will call certain template functions from the
masterserver to get each the links to the most recent installation (and archive) files for a given
platform. The template function's header could look like this:

function getDownloadURL (platform) ;

The masterserver has all the information it needs for that and can supply that information. For the
download page, the masterserver web frontend does not need to query the list of running games as
the download page only needs the urls to the installation files. There should be a way to tell the
masterserver web frontend to not query that list automatically if there isn't yet.

Versioning and updates

The versioning will be A.B.C, whereas...

A = major release (Back to the Rocks, etc.)
B = update of a major release / minor release

C = bugfix release / minor changes

The build scripts will generate c4u update packages that can be applied to the last X released
versions, independent of which numbers in the version string did change. (While X will probably a
number around 10-20. But this number can easily be changed by the build script with this design.)
For any versions that are not covered by this update anymore, the whole most current installation
package is loaded. The exact logic when to and for which versions to supply an update packageis be
decided by the build script server. It is possible to always force a reinstallation for e.g. when the A
version has changed or when there occur problems with update packages.

With this update infrastructure, there will always be only one c4u update package per platform
which always updates to the newest version. Certain installation files (for example each the last
installation package if A or B is changed) can be kept by decision of the build script server by
delete _old files = 'no'.

RPMs, DEBs etc. are not covered by this update system because updates don't work if Clonk is
installed system-wide (with a package manager) under linux. It also wouldn't make sense, because
package-managers have their own update mechanism. Whenever the time comes that RPMs, DEBs
etc. will be maintained, we need a preprocessor-switch in the source to disable the update system
for package-manager-users.

	Updating with the masterserver
	Masterserver interface to the Engine
	Constructing the UpdateURL
	Interface to the build scripts
	Download page
	Versioning and updates

